If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x+14=16x^2
We move all terms to the left:
63x+14-(16x^2)=0
determiningTheFunctionDomain -16x^2+63x+14=0
a = -16; b = 63; c = +14;
Δ = b2-4ac
Δ = 632-4·(-16)·14
Δ = 4865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-\sqrt{4865}}{2*-16}=\frac{-63-\sqrt{4865}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+\sqrt{4865}}{2*-16}=\frac{-63+\sqrt{4865}}{-32} $
| 0.5x+-0.3=-0.8 | | (x+10)(x+14)=(x+14)(x-20( | | 1.15y=-2.3 | | 0.16x=-2.3 | | 0.16y=-2.3 | | 4x+6.6=27 | | 7y=15.4 | | 3y-4y=15.4 | | (3x-4/2)+(2x+1/5)=(8-x/3) | | (-2*x)+13=(x-7)*3 | | x+15.4=2.9 | | x^2-107-107x=0 | | -4(-3x+6)=-24 | | -2+2x+x=10 | | 4t-2t=2t+15 | | 5^2=x^2 | | 2(x-9)^2-128=0 | | 81=(x+5^2) | | 5y-7=3y+10 | | 2a=5a-36 | | 30-(2x+1=-13 | | 45.8=0,75+18x | | 18x-13x-5-29+2x=71 | | 32x-7x9-38-4=24 | | 6x-4+5x-8+2x-9=70 | | 2x+31=8x+7 | | 12x+11=5x+32 | | 7x+20=4x+17 | | 5x-8=-x-26 | | 6x-15=5x-8 | | 3•(2x-1)=2x+13 | | x*2-10+x*2-98=180 |